大庆石化HDPE聚乙烯DMDA-8920 透明级
PP/超高分子量聚乙烯(UHMW-PE)共混体系的亚微观相态为双连续相,超高分子量聚乙烯(UHMW-PE)分子与长链的PP分子共同构成一种共混网络,其余PP构成一个PP网络,二者交织成为一种“线性互穿网络”。其中共混网络在材料中起到骨架作用,为材料提供机械强度,受到外力冲击时,它会发生较大形变以吸收外界能量,起到增韧的作用;形成的网络越完整,密度越大,则增韧效果越好。
超高分子量聚乙烯(UHMW-PE)除可与塑料形成合金来改善其加工性能外,还可获得其它性能。其中,以PP/超高分子量聚乙烯(UHMW-PE)合金为突出。
EPDM能对PP/超高分子量聚乙烯(UHMW-PE)合金起到增容的作用。由于EPDM具备的两种主要链节分别与PP和超高分子量聚乙烯(UHMW-PE)相同,因而与两种材料都有比较好的亲合力,共混时容易分散在两相界面上。EPDM对复合共晶起到插入、分割和细化的作用,这对提高材料的韧性是有益的,能大幅度地提高缺口冲击强度。
通常聚合物的增韧是在树脂中引入柔性链段形成复合物(如橡塑共混物),其增韧机理为“多重银纹化机理”。而在PP/超高分子量聚乙烯(UHMW-PE)体系,超高分子量聚乙烯(UHMW-PE)对PP有明显的增韧作用,这是“多重裂纹”理论所无法解释的。国内早于1993年报道采用超高分子量聚乙烯(UHMW-PE)增韧PP取得成功,当超高分子量聚乙烯(UHMW-PE)的含量为15%时,共混物的缺口冲击强度比纯PP提高2倍以上。
与热熔融共混材料相比,由聚合填充工艺制备的超高分子量聚乙烯(UHMW-PE)复合材料中,填料粒子分散良好,且粒子与聚合物基体的界面结合也较好。这就使得复合材料的拉伸强度、冲击强度与超高分子量聚乙烯(UHMW-PE)相差不大,却远远好于共混型材料,尤其是在高填充情况下,对比更加明显,复合材料的硬度、弯曲强度,尤其是弯曲模量比纯超高分子量聚乙烯(UHMW-PE)提高许多,尤其适用作轴承、轴座等受力零部件。而且复合材料的热力学性能也有较好的改善:维卡软化点提高近30℃,热变形温度提高近20℃,线膨胀系数下降20%以上。因此,此材料可用于温度较高的场合,并适于制造轴承、轴套、齿轮等精密度要求高的机械零件。
高分子合成中的聚合填充工艺是一种新型的聚合方法,它是把填料进行处理,使其粒子表面形成活性中心,在聚合过程中让乙烯、丙烯等烯烃类单体在填料粒子表面聚合,形成紧密包裹粒子的树脂,后得到具有独特性能的复合材料。它除具有掺混型复合材料性能外,还有自己本身的特性:首先是不必熔融聚乙烯树脂,可保持填料的形状,制备粉状或纤维状的复合材料;其次,该复合材料不受填料/树脂组成比的限制,一般可任意设定填料的含量;另外,所得复合材料是均匀的组合物,不受填料比重、形状的限制。